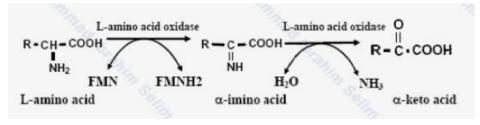
Sem – II (PG) Paper ZOO-202 Group B: Biochemistry Prepared by Anindita Das

Protein metabolism

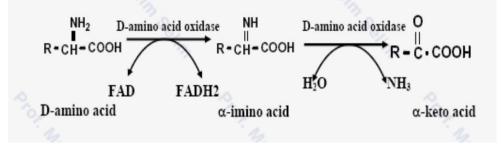
Deamination and transamination

Deamination

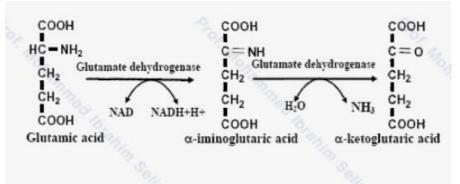

Deamination is the removal of the amine group from α -amino acid as ammonia (NH₃) with formation of α -keto acid.

- The liver and kidney are the main sites for deamination.
- Deamination may be oxidative or non-oxidative.

A. Oxidative deamination:

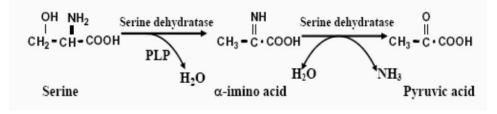

It is catalysed by one of the following enzymes:

- 1. L-amino acid oxidases
 - This enzyme is present in the liver and kidney. Its activity is low.
 - ✓ It is an aerobic dehydrogenase that needs FMN as a coenzyme.
 - ✓ It deaminates most of the naturally occurring L-amino acids.



- 2. <u>D-amino acid oxidases</u>
 - ✓ D-amino acids are present in plants and bacterial cell wall.
 - ✓ They are not used in protein biosynthesis in humans & animals.

- \checkmark D-amino acids are deaminated by D-amino acid oxidase resulting in ammonia & α-keto acids.
- \checkmark This is present in liver.
- ✓ It is an aerobic dehydrogenase.
- ✓ It needs FAD as a coenzyme.

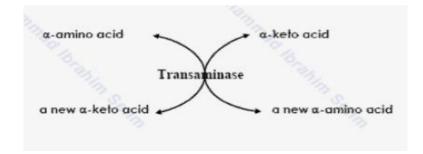

- 3. Glutamate dehydrogenase -
 - This enzyme is present in cytoplasm & mitochondria in most tissues. Its activity is high.
 - It is an anaerobic dehydrogenase. Needs NAD or NADP as a coenzyme.
 - \checkmark It deaminates glutamic acid resulting in α-ketoglutaric acid and ammonia.

B. Non-oxidative deamination:

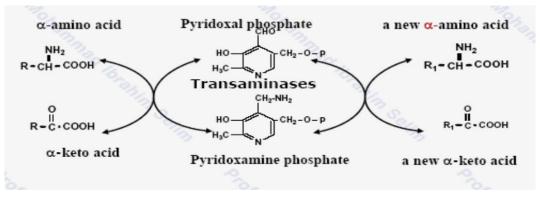
It is catalysed by one of the following enzymes:

- 1. Dehydratases
 - This enzyme deaminates amino acids containing hydroxyl group e.g. serine, homoserine & threonine.
 - ✓ It needs pyridoxal phosphate as coenzyme.

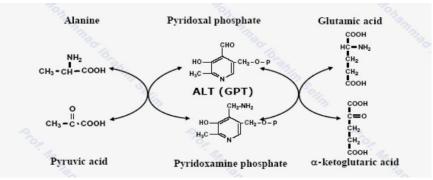
2. <u>Desulfhydrase</u> –


- This enzyme deaminates sulphur containing amino acids e.g. cysteine and cystine.
- ✓ It needs pyridoxal phosphate as a coenzyme.

Transamination

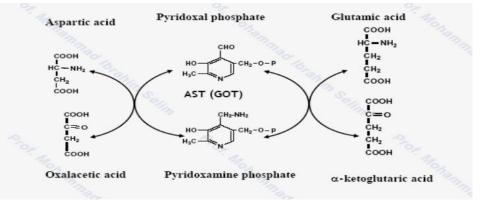

Transamination is the transfer of an amine group from α -amino acid to α -keto acid (amino acid without an amine group), thus creating a new α -amino acid and α -keto acid. This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential amino acids to non-essential amino acids (amino acids that can be synthesized de novo by the organism).

- The liver is the main site for transamination.
- All amino acids can be transaminated except lys, thr, pro & hy-Pro.
- All transamination reactions are reversible.
- It is catalysed by aminotransferases (transaminases).
- It needs pyridoxal phosphate as a coenzyme.

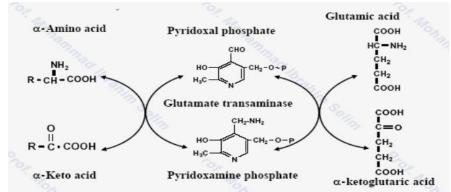

Role of pyridoxal phosphate in transamination:

Pyridoxal phosphate acts as an intermediate carrier for amino group. It accepts the amino group from amino acid to form pyridoxamine phosphate which in turn gives the amino group to α -keto acid.

Examples of transaminases:


- A. Alanine transaminase
- B. Aspartate transaminase
- C. Glutamate transaminase
- A. Alanine transaminase (ALT):
 - It is also called glutamic pyruvic transaminase (GPT).
 - It also catalyses the reverse reaction.
 - It catalyses the transfer of amino group from glutamic acid to pyruvic acid to form alanine and α-ketoglutaric acid.
 - It is present in the cytoplasm of liver cells.

B. Aspartate transaminase (AST):


- It is also called glutamic oxalacetic transaminase (GOT).
- It also catalyses the reverse reaction.
- It catalyses the transfer of amino group from glutamic acid to oxalacetic acid to form aspartic acid and α-ketoglutaric acid.

• It is present in both cytoplasm and mitochondria of liver, heart and skeletal muscle cells.

C. <u>Glutamate transaminase:</u>

- It also catalyses the reverse reaction.
- It catalyses the transfer of amino group from any amino acid (except lys, thr, pro and Hy-Pro) to α -ketoglutaric acid to form glutamic acid and the corresponding α -keto acid.
- It is widely distributed in all tissues.

Clinical significance of serum transaminases:

- Transaminases are intracellular enzymes.
- Their levels in blood plasma are low under normal conditions.
- Any damage to the organs associated with these enzymes (liver, heart, skeletal muscles) will increase the level of transaminases in blood.
- In liver diseases, there is an increase in both serum ALT (SGPT) and AST (SGOT) levels.
- In acute liver diseases (acute viral hepatitis), the increase is more in SGPT.
- In chronic liver diseases (liver cirrhosis), the increase is more in SGOT.
- In heart diseases (myocardial infarction) and skeletal muscle diseases (myasthenia gravis), there is an increase in SGOT only.

Differences between transamination and deamination:

Торіс	Transamination	Deamination
Process:	The transfer of an amino	The removal of an amino
	group from one molecule	group from an amino
	to another, especially from	acid to form a keto acid.
	an amino acid to a keto	
	acid.	
Finalization:	This process involves in the	This process involves in
	synthesis of non-essential	the breakdown of excess
	amino acids.	proteins.
Sites:	It occurs mainly in liver	It occurs in liver & kidney
	cells (also heart & skeletal	cells.
	muscle cells) of the body.	
Respective	Transaminases (Ala, Asp,	Oxidases,
enzymes:	Glu) or aminotransferases	dehydrogenases,
	catalyse this reaction.	dehydratases,
		desulfhydrases catalyse
		this reaction.
Result:	Results in an exchange of	Results in the elimination
	an amine group with a keto	of ammonia.
	group.	
Speciality:	Glutamic acid is the main	Glutamic acid is the
	form of amino acid	primary form of amino
	produced in this reaction.	acid, which undergo
		deamination.
Reversibility:	This is reversible.	This is irreversible.
Associated	Pyridoxal phosphate	Oxidative: FMN, FAD,
Coenzymes:		NAD/NADP
		Non-oxidative: Pyridoxal
		phosphate